If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4k^2+24k-6=0
a = 4; b = 24; c = -6;
Δ = b2-4ac
Δ = 242-4·4·(-6)
Δ = 672
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{672}=\sqrt{16*42}=\sqrt{16}*\sqrt{42}=4\sqrt{42}$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(24)-4\sqrt{42}}{2*4}=\frac{-24-4\sqrt{42}}{8} $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(24)+4\sqrt{42}}{2*4}=\frac{-24+4\sqrt{42}}{8} $
| -16m+7m=19-73 | | 1/2(16-i)=5.5i | | 33/x=2.75 | | 584.57=1/2(90)a | | (2580+x+2920)÷3=3000 | | 3x+1/3-x-2/2=2+2x-3/3 | | 2x/9+5/2=x/3-1/2 | | 4.8+10m=7.17 | | |5x-12|=-3 | | 0.6*x=100 | | 19=h/3 | | -6(v+1)=4v-26 | | v2=8125 | | 6x+6=6x+6=6x+6= 3x−21 | | -3x^2+43x-144=0 | | −2x−9= x−21 | | 9^2x-1=729 | | 4.9=-8.1x-8.6x | | -25+4x(2x+5)=-61 | | 100=36+x^2 | | 5x#=17 | | 2b-6+3b+8=14 | | 3/4x+12=-10 | | 2a-31=-9+24 | | 8x-1+5x=180-90 | | (x*0.8)+x=100 | | y-3=-66 | | (x*0.2)+x=100 | | 4−3x=−3x | | 5/8(x+7)=5 | | 7(3x-2)=35x+1 | | 7(30x-20)=35x+10 |